

LA-UR-19-20054

Approved for public release; distribution is unlimited.

Title: Quantum Resources for Information Processing

Author(s): Girolami, Davide

Intended for: Talk for research visit at Purdue Univ.

Issued: 2019-01-08

Quantum Resources for Information Processing

Davide Girolami

West Lafayette, 17 January 2019

How quantum differs from classical?

Quantum Resources

Goal: Characterizing Quantum Resources

- **?** Theoretical Quantification: $f_R(\rho)$ being monotone under free operations
- **?** Demonstration of supraclassical performance: $f_R(\rho)$ is figure of merit in a task
- **?** Experimental Detection:

$$f_R(
ho) = \langle O_{ ext{exp}}
angle, O_{ ext{exp}} = O_{ ext{exp}}^\dagger$$

(Some) Technical Objectives

I Evaluating the power of quantum devices (Th)

II Evaluating the power of quantum devices (Exp)

III (Future) Quantum Resources for Artificial Intelligence

I Evaluating the power of quantum devices (Th)

- System S, described by ρ_N
- How to quantify correlations of order $2 \le k \le N$ in an N particle system ?

Covariances? No thanks

$$\langle X_1 X_2 \dots X_N \rangle_{\rho_N} - \Pi_i \langle X_i \rangle_{\rho_N}$$

Don't detect **classical** correlations **X**Can be created by local operations **X**Can be created by fine graining **X**

D. Kaszlikowski, A. Sen, U. Sen, V. Vedral, and A. Winter, PRL 101, 070502 (2008); Z. Walczak, Comment; D. Kaszlikowski, *et al.*, Reply. Z. Walczak, PLA 374, 3999 (2010), C. H. Bennett, *et al.*, PRA 83, 012312 (2011)

Correlation hierarchy

Relative entropy of genuine multipartite correlations

• Correlations higher than k: distance to P_k

$$S^{k o N}(
ho_N) \ := \ \min_{\sigma\in P_k} S(
ho_N||\sigma)$$

• Genuine *k*-partite correlations:

$$S^k(
ho_N) \;:=\; S^{k-1 o N}(
ho_N) - S^{k o N}(
ho_N)$$

A Complexity measure

Lequally correlated states can have very different structure

? Single index classifying multipartite classical and quantum states

Weaving := weighted sum of genuine multipartite correlations

$$W_S(
ho_N) = \sum_{k=2}^N \omega_k S^k(
ho_N)$$

D. Girolami, T. Tufarelli, and C. Susa, Phys. Rev. Lett. 119, 140505 (2017)

Test, $\omega_k = k - 1$

State	$\mathbf{W_{S}}$
$[(\ket{00}ra{00} + \ket{11}ra{11})/2]^{\otimes N/2}$	N/2
$\left[rac{(\ket{00}\!+\!\ket{11}\!)}{\sqrt{2}} ight]\!\otimes\! N/2$	N
$(\sum_{i=1}^d \ket{ii}/\sqrt{d})^{\otimes N/2}$	$N\log d$
$(0 angle^{\otimes N}+ 1 angle^{\otimes N})/\sqrt{2}$	$\sim N \log N$
$\sum_i \mathcal{P}_i(0 angle^{\otimes N/2}\otimes 1 angle^{\otimes N/2})/\sqrt{inom{N}{N/2}}$	\sim N^2

II Evaluating the power of quantum devices (Exp)

Usefulness = Superlinear Speed

- $\star \; \operatorname{Speed}(\mathsf{\Pi}_i U_t^i \Psi_N {U_t^i}^\dagger) \geq f_{\operatorname{linear}}(N) \Rightarrow \Psi_N \; ext{is entangled}$
- $\star~O(4^N)$ measurements required to reconstruct system state

Evaluating Speed with limited resources

 \star Two system copies and $O(3^n)$ measurements are sufficient to evaluate the speed function, even if system state and dynamics are unknown

EXP scheme for n-qubit systems

$$V_{1,2,...,n} = \bigotimes_{i} V_{i}, \quad V_{i} = I_{2} - 2 \left| \phi_{-}^{i} \right\rangle \left\langle \phi_{-}^{i} \right|$$

$$P_{A_{1},A_{2},...,A_{n}}^{I} P_{A_{2}}^{II} U_{\varphi} BS$$

$$P_{A_{2},...,A_{n}}^{I} P_{A_{2}}^{II} U_{\varphi} BS$$

$$P_{A_{n},A_{2},...,A_{n}}^{I} P_{A_{n}}^{II} U_{\varphi} BS$$

$$P_{A_{n},A_{n}}^{I} U_{\varphi} BS$$

C. M. Alves and D. Jaksch, PRL 93, 110501 (2004), H. Jeong *et al.*, J. Opt. Soc. Am. B 31, 3057 (2014)

Devices: IBM Q

- https://www.research.ibm.com/ibm-q/
- 5-qubit, 16-qubit machines
- Superconducting qubits initialized in ground state at 15ml K, gate error=10⁻³
- remote access via Composer and Qiskit

Entanglement detection in ibmqx4

BUT constraints... split into two experiments

A comparison

$$\star \hspace{0.1cm}
ho = p \hspace{0.1cm} |\phi^{+}\rangle \hspace{0.1cm} \langle \phi^{+}| + (1 - p) \hspace{0.1cm} |\phi^{-}\rangle \hspace{0.1cm} \langle \phi^{-}| \hspace{0.1cm}, \hspace{0.1cm} p \in [0, 1], \hspace{0.1cm} U_{t} = e^{-i\sigma_{x}t}, \hspace{0.1cm} t = \pi/6$$

Left: ibmqx4; Right: optical setup, C. Zhang et al. PRA 96, 042327 (2017) Original Scheme: D. Girolami, PRL 113, 170401 (2014)

Multipartite Entanglement detection

* A state Ψ_N is k-partite entangled iff it is not a tensor product of states describing $\leq k$ -subsystems

$$\star$$
 E.g. $\Psi_{3}\neq\Psi_{2}\otimes\Psi_{1}\Rightarrow\Psi_{3}$ displays 3-partite entanglement

$$\star \; \mathrm{Speed}(\sum_{i} U_{t}^{i} \Psi_{N} {U_{t}^{i}}^{\dagger}) \geq (\lfloor N/k \rfloor k + (N - \lfloor N/k \rfloor k)^{2})/4, \ k \geq 2 \Rightarrow \Psi_{N} \; \mathrm{is \; at \; least } \, k ext{-partite entangled}$$

Multipartite Entanglement detection

BUT constraints... split into three experiments

Detection of speed-up due to tripartite and bipartite Entanglement

$$\star \; |G\!H\!Z
angle = 1/\sqrt{2}(|000
angle + |111
angle), U_t = e^{-i\sigma_x t}, e^{-i\sigma_z t}, t = \pi/6$$

★ Speed()≥ .75 certifies bipartite entanglement, Speed()≥
 1.25 certifies tripartite entanglement

$$\star \text{ SpeedX}(\Pi_i U_t^i \ket{GHZ}) = 0.61 \pm 0.16 \text{ } \text{X}$$

 $\star \; \mathrm{SpeedZ}(\Pi_i U_t^i \ket{\mathit{GHZ}}) = 1.89 \pm 0.20. \; \mathsf{V}$

Bonus: Bound to state engineering

D. Girolami, Phys. Rev. Lett. (in press), arXiv:1808.01649

III Quantum Resources for AI

How quantum systems think?

How quantum systems think?

Quantum Decision Making

- Quantize classical strategies (Markov decision processes, dynamic programming)
- Attack by quantizing the Bellman equation(s) and performance comparing
- Deliberation as a quantum walk, faster decision (smarter?)
- Testable in today quantum machines, e.g. IBM chips (D-Wave?)

Summary

Quantum Information Processing as clever use of quantum resources

Foundational and practical value

A great record of successes, but also future applications

The End

Email: davegirolami@gmail.com

Website: https://sites.google.com/site/davegirolami/